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Abstract. The structure of the ground state beyond the instability point of the quasiparticle system
with a Fermi-step momentum distribution is studied within the model of a Fermi liquid with a strong
repulsive interaction. A ground-state rearrangement occurs as the interaction strength is increased
beyond a certain critical value. Numerical investigation of the initial stage of this structural
transition shows that there are two temperature regions, corresponding to different scenarios of
the rearrangement. While for temperatureT larger than some characteristic temperatureT0 the
behaviour of the system is the same as that in the case of fermion condensation, forT . T0 an
intermediate structure with a multi-connected quasiparticle momentum distribution arises.

1. Introduction

The question of the applicability of the Landau Fermi-liquid theory [1] for describing properties
of strongly correlated Fermi systems has been under discussion for a long time. It is known that
this theory is not valid for one-dimensional (1D) systems [2]. For such systems, the concept
of a Luttinger liquid [3] with a single-particle Green function containing no quasiparticle pole
is usually introduced, instead of the quasiparticle picture. The boundaries of the non-Fermi-
liquid view also encompass strongly correlated 2D liquids [4, 5], since HTC materials with
quasi-2D structure possess properties at variance with expectation from the Landau theory.
However, the recently measured electronic spectra of such materials [6–8] show evidence
for the presence of a quasiparticle pole in the single-electron propagator. At the same time,
new possibilities were found within the quasiparticle approach in references [9–12], where
quasiparticles with momentum distributions differing from the ones assumed in the Landau
theory are introduced. This new class of systems with the presence of a fermion condensate, as
predicted in references [11,12], possesses a rich variety of properties [12–15], some of which
are characteristics of a non-Fermi-liquid behaviour. As discussed within different models
[12–14, 16], a state with the fermion condensate arises as a result of the rearrangement of the
ground state of the system. This rearrangement in a system of quasiparticles, whose momentum
distribution has the shape of a Fermi sphere with an occupation number slightly smoothed at
T > 0, takes place when some parameters are varied and the pertinent stability condition is
violated. In the present work we consider the model of a homogeneous Fermi liquid, which
also displays a rearrangement of the ground state of the quasiparticle system, and investigate
the scenario of the initial stage of the rearrangement.
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2. Theoretical and computational aspects

2.1. The doubly connected Fermi sphere and the fermion condensate

Let us start by recalling the Landau relation between the quasiparticle momentum distribution
np(T ) and the quasiparticle spectrumεp(T ):

np(T ) =
{

1 + exp
εp(T )− µ(T )

T

}−1

(1)

(µ(T ) is the chemical potential), which results from a variational equationδF/δnp = 0 (F is
the free energy of the system) with the usual expression for the entropy [17]. On one hand,
equation (1) is simply the Fermi–Dirac quasiparticle distribution over energies. On the other
hand, this relationship is an equation for the quasiparticle distribution over the phase space. In
fact, the quasiparticle energy is the variational derivative of the ground-state energy functional
E0[n] with respect to the quasiparticle distribution,εp(T ) = δE0/δnp(T ), and, therefore, it is
itself a functional ofnp(T ).

It is postulated in the Landau theory that in a homogeneous isotropic Fermi liquid, like in a
Fermi gas, the quasiparticle momentum distribution atT = 0 has the shape of a fully occupied
Fermi spheren(0)F (p) = θ(pF − p) (the maximum momentumpF is related to the densityρ
of the system by the well known relationρ = p3

F /(3π
2)). The low-temperature behaviour of

the quasiparticle spectrum corresponding to such a momentum distribution has the form [17]

εp(T )− µ(T ) = ξ(p) + O(T 2). (2)

The functionξ(p) increases monotonically in the vicinity of the Fermi momentum and changes
its sign atp = pF . Its slope at this point, which is the group velocity of the quasiparticles
on the Fermi surfacevF = dξ(p)/dp|p=pF , is determined by one of the phenomenological
parameters of the Fermi-liquid theory, the effective massM∗ = pF/vF .

In a strongly correlated Fermi system, a quasiparticle momentum distribution minimizing
the energy functionalE0[n(p)] atT = 0 may be located away from the corner pointn

(0)
F (p) of

the functional space [n], and the low-temperature behaviour of the corresponding quasiparticle
spectrum may differ from equation (2). For instance, it was found in reference [18] that quasi-
particle energies which are equal to the chemical potential in a finite region of the momentum
space can exist. In references [9,10], some model functionalsE0[n(p)] were introduced which,
for certain values of the parameters, reach their absolute minima for a momentum distribution
characterized by a doubly connected Fermi sphere:

n
(1)
F (p) = θ(p1− p)− θ(p2 − p) + θ(p3− p). (3)

A quite different quasiparticle ground state corresponds to systems with the fermion
condensate [11–14]. Let us elucidate the main idea of the concept of a fermion condensate. A
homogeneous and isotropic quasiparticle system with the fermion condensate is described by
a singular solution of equation (1) which corresponds to a quasiparticle spectrum linear in the
temperatureT within a finite region of momenta [11,12]:

εp(T )− µ(T ) = T ν0(p) + O(T 2) pi < p < pf . (4)

Contrary to the case for the Fermi-liquid formula (2), there is noT -independent term in
equation (4). This means that atT = 0 the quasiparticle spectrum has a plateauεp ≡ µ in
the regionpi < p < pf . At T > 0 the slope of the plateau is linear inT , and its position
with respect to the chemical potentialµ(T ) is determined by the functionν0(p) which is
connected with the momentum distribution of quasiparticles in the condensate. Indeed, the
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singular solution of equation (1), which can easily be obtained upon substitution of the formula
(4) into equation (1), has the formnp(T ) = n0(p) + O(T ), where

n0(p) = {1 + exp(ν0(p))}−1 pi < p < pf (5)

is the momentum distribution of the condensate quasiparticles atT = 0. Outside the
condensate region,n0(p) = 1 at p < pi , andn0(p) = 0 at p > pf [11, 12]. One can
find the explicit form ofnp(T ) andεp(T ) provided that one knows the functional dependence
εp(T )[np(T )]. A set of model functionals was suggested in references [12–14, 16], each of
them possessing a minimum at the singular solution, within well defined regions of functional
parameters. In the present work we indicate the possibility of a scenario in which the transition
to the fermion condensate occurs through an intermediate structure, corresponding to a multi-
connected quasiparticle momentum distribution.

2.2. The effective functional

The initial stage of the rearrangement, which is studied in this paper, is characterized by
variations of the quasiparticle momentum distribution within a relatively thin layer around
p ∼ pF (see the results below). Under these conditions one can use the concept of an effective
functional, which is widely used in many-body theory. We consider the simple effective
functional for the quasiparticle spectrum:

εp[np(T )] = p2

2M
+
∫
F(p− p′)np′(T ) dτ ′ (6)

with the effective repulsive interaction

F(p− p′) = F0

(p− p′)2 + β2
. (7)

The symbol dτ in equation (6) indicates integration over d3p/(2π)3 and summation over spin
indices. Such a form of effective interaction is often used in calculations for both electronic
and nuclear systems. In the discussion below, we use the dimensionless interaction parameter
γ = MF0/(4π2pF ).

The functional dependence given by equations (6) and (7) together with equation (1) and
the normalization condition∫

np(T ) dτ = ρ (8)

are the closed set of equations to be solved for the quasiparticle distributionnp(T ) and the
spectrumεp(T ).

2.3. Numerical aspects

Equation (6), together with expression (1), represents the non-linear integral equation for the
functionεp(T ). This equation was solved numerically by an iterative procedure with weighting
factors. The five-point Newton–Cotes quadrature formula with a five-point filter on the output
was used for numerically folding the distributionnp(T )with the effective interactionF(p, p′).
The momentum grid had a stephp = 5× 10−5pF . The accuracy of the numerical solution
was determined by substituting it into the initial equation. The permissible error—that is, the
maximum discrepancy between the left- and the right-hand sides of equation (6)—was fixed
at 10−8εF . The number of iterations necessary for reaching this accuracy is about 3× 104

provided that the iteration weightw = 0.001 is taken, which is optimal for stability of the
iterative procedure. It is worth noting that the results are independent of which point in the
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functional space is taken as the initial one for the iterative procedure. For example, the same
solution forγ = 0.50 atT = 10−7 was obtained by starting from (i) the solution forγ = 0.50
atT = 10−5 and (ii) the solution forγ = 0.48 atT = 10−7 (here and below the temperature
T is taken in units ofε0

F = p2
F /2M).

3. Results

3.1. Instability of the Fermi-step momentum distribution

We begin by estimating the valueγ (0)c of the interaction strength at which the necessary
condition for stability of the system with the quasiparticle distributionn(0)F (p) at T = 0 is
violated. This condition is fulfilled [11, 12] provided that the variation of the ground-state
energyE0 under any admissible variations of the distributionn(p)

δE0 =
∫

[ε(p)− µ]δn(p)
d3p

(2π)3
(9)

is positive. Admissible variations ofn(0)F (p) are of the same sign as the differencep − pF ,
as dictated by the Pauli principle. Hence, upon substitution of the energyε(pF ) for the
chemical potentialµ in equation (9), one can reformulate the necessary stability condition as
a requirement for the value

s(p) = 2M
ε(p)− ε(pF )
p2 − p2

F

(10)

to be positive for each value of the momentump [11,12]. Therefore, if the functions(p) has
the first zero close topF , the violation of the stability condition means that a bend appears in
the curveε(p) in the vicinity of the Fermi momentum. To calculate the derivative dε/dp, it is
convenient to use the relation of the Fermi-liquid theory [17]:

∂ε

∂p
= p

M
+
∫
F(p− p′) ∂n

∂p′
dτ ′. (11)

Substituting the Fermi-step momentum distributionn(0)F (p) into equation (11), we obtain

ζ (0)(p) = M

pF

dε

dp
= p

pF
+
γpF

p
− γ (p

2 + p2
F + β2)

4p2
ln
(p + pF )2 + β2

(p − pF )2 + β2
. (12)

0,95 1,00

0,0

0,1
ζ(0)(p)

0.415

0.410

0.420

p/p
F

Figure 1. The functionζ (0)(p) calculated forγ = 0.410, 0.415, 0.420.
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The curvesζ (0)(p) calculated e.g. for the valueβ = 0.07pF and different values of
γ are shown in figure 1. One can see that the contact with zero takes place at the point
p = pc ' 0.97pF for γ = γ (0)c ' 0.415. Note that the proximity ofpc to pF justifies
the substitution of the functionζ (0)(p) for the functions(p). Therefore, the ground state
with the quasiparticle momentum distributionn(0)F (p) becomes unstable atγ > γ (0)c and its
rearrangement takes place. The critical valueγ (0)c varies with varying interaction radiusβ. In
figure 2, where the phase diagram in the variables(γ, β) is shown, the curveγ (0)c (β) separates
the phase of the normal Fermi liquid from the state with the rearranged quasiparticle momentum
distribution.

0,0 0,2 0,4 0,6 0,8 1,0
0,0

1,0

2,0

3,0
γ

c

(0)

β/p
F

Figure 2. The critical valueγ (0)c as a function of the parameterβ.
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F

0,9 1,0
0

1

p/p
F

T=10-5

n(p)

0,9 1,0
0

1

T=3 10-4

n(p)

p/p
F

0,9 1,0
0

1

p/p
F

T=10-6

n(p)

0,9 1,0
0

1

p/p
F

T=10-4

n(p)

0,9 1,0
0

1

p/p
F

T=10-7

n(p)

Figure 3. The quasiparticle momentum distributionsnp(T ) calculated forγ = 0.45 at different
temperatures.
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To get an idea of the physical range of the parameterγ in the case of the Coulomb
interaction, we takeF0 = 4πe2 and obtainγ = αrs/π , whereα = (4/9π)1/3. Then we find
that for the valueβ ' pF the critical value of the interaction strengthγ (0)c ∼ 3 corresponds to
rs ∼ 18.

3.2. The multi-connected momentum distribution

We move on to numerical investigation of the rearrangement of the quasiparticle momentum
distribution. We study the scenario of this rearrangement with increasing interaction strength
γ at fixed value of the interaction radiusβ. In the present work, we fix the valueβ = 0.07pF ,
corresponding to a long-range term of the nuclear effective NN interaction in dense nuclear or
neutron matter.

To see how the ground state is arranged just beyond the transition point, let us look at
figure 3, where the results of the calculations ofnp(T ) for γ = 0.45 at different values ofT
are shown. AtT ∼ 2× 10−3, the quasiparticle momentum distributionnp(T ) has the shape
characteristic of a system with a fermion condensate (we shall discuss this in detail below). At
T . 2×10−3 a downturn appears in the distribution, which deepens as temperature decreases,
and finally, atT = 10−7, one can hardly distinguishnp(T ) from that for the doubly connected
Fermi sphere defined in equation (3). The quasiparticle spectrumεp(T ) corresponding to
such a distribution calculated atT = 10−7 is shown in figure 4. The spectrum of a fermion
condensate has a shape with a plateau at a value exactly equal to the chemical potentialµ

at T = 0 and beginning to slope slightly atT > 0 [11, 12]. Here we have a quite different
behaviour, and the quasiparticle spectrum of the doubly connected Fermi-like distribution
equalsµ at three points, which are at the borderp1 of the inner sphere and the bordersp2 and
p3 of the spherical layer. The deviation ofεp(T ) fromµ reaches the value∼2×10−4εF at the
point of the minimum of the spectrum and the value∼2×10−6εF at the point of its maximum.
Despite the latter value being small, it is still higher than the estimated numerical error by two
orders of magnitude.

0,90 0,95 1,00

-2

-1

0
(ε(p)-µ)/ε

F

0 104

p/p
F

Figure 4. The quasiparticle spectrum(εp(T )− µ)/ε0
F calculated forγ = 0.45 atT = 10−7.

The behaviour of the doubly connected Fermi sphere with increasing interaction strength
γ is displayed in figure 5. The spherical layer appearing beyond the transition point has, from
the start, a finite thickness, while the gap between the layer and the inner sphere develops
starting from a vanishingly small width. The outer layer gets thicker and moves away from
the inner sphere as the parameterγ increases. What happens then with such a distribution? To
understand that, let us investigate the stability of such a Fermi sphere divided into two layers.
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0,90 0,95 1,00

γ = 0,452

ζ(1)(p)n(p)

0

0,01

0

1

p/p
F

0,90 0,95 1,00
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ζ(1)(p)n(p)

0

0,01

0

1

p/p
F

0,90 0,95 1,00

1

γ = 0,440

ζ(1)(p)n(p)

0

0,01

0

p/p
F

0,90 0,95 1,00p/p
F

γ = 0,430

ζ(1)(p)n(p)

0

0,01

0

1

Figure 5. The quasiparticle momentum distributionsn(p) and the functionζ (1)(p) calculated for
different values of the parameterγ .

We calculate the functionζ (1)(p) for the momentum distribution in the form of equation (3)
and see when and where the critical change of the sign of that function occurs. Using again
relation (11) we find that

ζ (1)(p) = M

pF

dε

dp
= p

pF
+

3∑
i=1

(−1)i−1

{
γpi

p
− γ (p

2 + p2
i + β2)

4p2
ln
(p + pi)2 + β2

(p − pi)2 + β2

}
. (13)

The functionζ (1)(p) calculated for different values ofγ is displayed in figure 5. The points
of the maximum absolute values of the derivative dn/dp at T = 10−7 were taken as the
boundary momentap1, p2, p3 for that calculation. One can easily see that inside the region
γ (0)c < γ < γ (1)c ' 0.452, the two points whereζ (1)(p) changes sign are located in such a way
that the corresponding local minimum and maximum ofε(p) lie in the domains wheren(p)
equals 0 and 1 respectively. This means that the sign of the differenceε(p)−µ coincides with
that of the possible variationsδn(p) allowed by the Pauli principle. Hence the distribution
considered satisfies the stability condition.

However, one can see in figure 5 that atγ > γ (1)c ' 0.452, the situation changes. With the
displayed behaviour of the functionζ (1)(p), there are regions whereε(p) − µ > 0, but with
n(p) = 1. This means that the necessary stability condition is violated, since allowed variations
δn(p) exist which lower the ground-state energy. This results in the second rearrangement of
the ground state of the system emerging atγ = γ (1)c . We show in figure 6 how the quasiparticle
distribution is arranged beyond the second transition pointγ (1)c . For definiteness, the results
of the calculations forγ = 0.46 at different values ofT are displayed. The calculations show
that the new layer appears for the above-mentioned value of the coupling constant and that
the quasiparticle distributionnp(T ) atT = 10−7 is very close to that for the triply connected
Fermi sphere:

n
(2)
F (p) = θ(p1− p)− θ(p2 − p) + θ(p3− p)− θ(p4 − p) + θ(p5− p). (14)

The calculation shows that the appearance of new layers with increasing values of the parameter
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Figure 6. As figure 2, but forγ = 0.46.
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Figure 7. As figure 2, but forγ = 0.50.

γ does not stop at the level of the triply connected Fermi sphere. Figure 7, where the
quasiparticle distributionnp(T ) calculated forγ = 0.50 is displayed, shows further divisions
into layers of the momentum space. The distributionnp(T ) for γ = 0.50 approaches that of a
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0,85 0,90 0,95 1,00

-3,0

-2,0

-1,0

0,0

p/p
F

(ε(p)-µ)/ε
F

0 104

0,85 0,90 0,95

-0,04

0,00

0,04

Figure 8. The quasiparticle spectra(εp(T )− µ)/ε0
F calculated forγ = 0.50 atT = 10−4 (solid

curve),T = 10−5 (long dashes),T = 10−6 (short dashes), andT = 10−7 (dots).

multi-connected Fermi sphere with loweringT , which is arranged as follows: the small inner
occupied sphere with the radius∼0.85pF is surrounded by four spherical occupied layers with
thickness∼(0.03–0.04)pF divided by spherical empty layers with thickness∼(0.01–0.02)pF .
The quasiparticle spectraεp(T ) for γ = 0.50 are shown in figure 8. AtT = 10−7, the spectrum
crosses the lineε = µ nine times, at the boundary of the inner sphere and at the boundaries of
the spherical layers.

Unfortunately, the computation time sharply increases with increasing phase volume�0

of the layered distribution. This is why the calculations of the present work are carried out
up to the value of the interaction strengthγ 6 0.5, corresponding to the initial stage of the
rearrangement. The investigation of what happens in the system at larger values ofγ is now
in progress.

4. Two scenarios of the rearrangement

Thus, beyond the first transition pointγ (0)c , the scenario of the rearrangement of the quasiparticle
ground state at lowT . 10−3 is the succession of transitions with increasingγ . Each one of
them results in the appearance of a new spherical layer in momentum space. Let us compare
this scenario of the rearrangement and some distinctive features of the ground state under
consideration with those of the fermion condensation.

Let us recall the main features of the fermion condensation phenomenon. One of them
is the plateau in the quasiparticle spectrumεp(T ), with a value exactly equal to the chemical
potentialµ at T = 0, in accordance with equation (4), and which develops a finite slope
with increasing temperature. Unlike the spectra for systems with the fermion condensate,
the spectrumεp(T = 0) for the multi-connected Fermi-like distribution equals the chemical
potential at a finite number of points, which are the boundaries of the spherical layers. The
low-temperature expansion of such a spectrum has the form of equation (2), typical of the
Landau theory, with the non-monotonic functionξ(p) changing its sign several times, unlike
the monotonic function for the usual Fermi liquid. AtT = 0, the ground state with the multi-
connected Fermi-like quasiparticle distribution is not macroscopically degenerate, unlike the
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ground state of a fermion condensate. At the same time, there exist singularities of the density
of states connected with the maxima and the minima of the functionεp(T = 0). These
singularities gradually disappear with increasingT up toT0 ' 2× 10−3, where the last twist
of the spectrum corresponding to the outer layer is smoothed. AtT & T0 the difference
εp(T )−µ(T ) becomes linear in temperature, like that for systems with a fermion condensate.

The other feature of systems with fermion condensates is the shape of the distributionn(p)

given by equation (5). Within the region occupied by the fermion condensate, 0< n(p) < 1,
this corresponds to non-zero entropy of the fermion condensate atT = 0. The contradiction
with the Nernst theorem disappears, providing that correlations (e.g. superfluidity) are taken
into account, which immediately rearrange the ground state due to its degeneracy and re-
establish a zero entropy atT = 0. The entropy of the state with the multi-connected Fermi-like
quasiparticle momentum distribution equals zero at zero temperature becausen(p) takes only
the values 0 and 1. The multi-layered distribution changes quickly with increasingT : the
sharp boundaries of the layers are smoothed and the layers combine together atT ' T0 into a
monotonically decreasing curve. AtT & T0 the smoothedn(p) becomes linear inT , like the
quasiparticle momentum distribution of a system with the fermion condensate. Being equal
to zero atT = 0, the entropy of the system with the multi-connected Fermi-like distribution
increases sharply with temperature due to the quick smoothing of the functionnp(T ). The
calculations show that atT = T0 the entropy reaches the valueS0 ∼ �0/�, the ratio of the
phase volume of the multi-layered region�0 to that of the whole system�. Just this value
of the entropy would be characteristic atT ∼ 0 for a system with the fermion condensate
occupying the phase volume�0. At T & T0 the entropy becomes linear in temperature, like
that of a system with a fermion condensate [12,16].

All of these features of the momentum distribution, entropy, quasiparticle spectrum, and
density of states for a system with a multi-connected Fermi-like quasiparticle distribution, as
well as the problem of validity of such a quasiparticle pattern, will be studied in detail in a
separate paper.

The scenario of the fermion condensation is characterized by the single critical valueγc
of the coupling constant, at which the fermion condensate arises in the system. The phase
volume of the fermion condensate increases asγ increases further; however, the shape of the
momentum distribution does not modify and no further qualitative changes occur [11,12]. The
scenarios of rearrangement found for the model under consideration are different for different
temperatures. AtT = 0 the scenario is characterized by a sequence of critical valuesγ (i)c , each
one corresponding to the appearance of a new ground state with a larger degree of connectivity.
The number of critical constants decreases asT increases, so only one of them,γ (0)c , survives
atT & T0. This means that for the model considered, the scenario of formation of the multi-
connected Fermi sphere atT = 0 gradually transforms into that of the fermion condensation
with increasing temperature.

5. Conclusions

In summary, the structure of the ground state of the homogeneous Fermi liquid with strong
interparticle repulsion is studied within the framework of the effective-functional approach.
The numerical investigation of the simple functional with strong repulsive effective interaction
showed that at a fixed value of the interaction radius there exists a critical value of the
interaction strengthγ (0)c , beyond which the ground state with the Fermi-step quasiparticle
momentum distribution becomes unstable and the rearrangement of the ground state takes
place. The scenario of the initial stage of that rearrangement with increasingγ was found
to be different for different regions of temperature. AtT = 0, there exist a set of critical
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constantsγ (i)c corresponding to the succession of transitions, each resulting in the emerging
of a new spherical layer of the quasiparticle momentum distributionn(p)). The quasiparticle
spectrumε(p) corresponding to such a layered distribution does not have a plateau, unlike the
fermion condensate, and equals the chemical potential at a finite number of points, which are
the boundaries of the layers. The ground state with the multi-connected Fermi-like distribution
possesses no macroscopic degeneracy and the entropy of this state is zero at zero temperature.
With increasing temperature the layers are quickly smoothed, so atT ∼ T0 ' 2× 10−3 there
is no longer any trace of the critical constantsγ (i)c with the exception ofγ (0)c . At T & T0 the
scenario of the rearrangement is that of the fermion condensation.
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